首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3386篇
  免费   178篇
  国内免费   332篇
  2023年   16篇
  2022年   39篇
  2021年   46篇
  2020年   41篇
  2019年   53篇
  2018年   56篇
  2017年   94篇
  2016年   107篇
  2015年   71篇
  2014年   105篇
  2013年   140篇
  2012年   83篇
  2011年   148篇
  2010年   116篇
  2009年   229篇
  2008年   254篇
  2007年   255篇
  2006年   228篇
  2005年   170篇
  2004年   168篇
  2003年   127篇
  2002年   85篇
  2001年   85篇
  2000年   79篇
  1999年   97篇
  1998年   83篇
  1997年   74篇
  1996年   74篇
  1995年   63篇
  1994年   57篇
  1993年   60篇
  1992年   57篇
  1991年   56篇
  1990年   53篇
  1989年   44篇
  1988年   38篇
  1987年   37篇
  1986年   35篇
  1985年   33篇
  1984年   36篇
  1983年   21篇
  1982年   41篇
  1981年   37篇
  1980年   34篇
  1979年   32篇
  1978年   10篇
  1977年   10篇
  1976年   5篇
  1974年   3篇
  1973年   5篇
排序方式: 共有3896条查询结果,搜索用时 15 毫秒
71.
水分胁迫对小麦叶片光合作用的影响及其与抗旱性的关系   总被引:10,自引:1,他引:9  
在水分胁迫初期,两个小麦品种叶片光合速率,气孔导度和细胞间隙CO_2浓度降低,气孔限制值增加,光合速率的降低主要是气孔因素的限制。中度到严重水分胁迫使叶片光合速率、气孔导度和气孔限制值降低,细胞间隙CO_2浓度明显增加,且叶圆片放氧能力,叶绿体Hill反应、叶绿素荧光强度和表观量子产额降低,此时光合速率的降低主要是叶肉细胞光合活性的下降引起的。抗旱性弱的郑引一号叶肉细胞光合活性比抗旱性强的丰抗13更容易受到水分胁迫的影响。  相似文献   
72.
The results of numerical modelling of large-scale circulation in Lakes Onega and Ladoga are presented, with primary emphasis on the temporal variability of currents with time scales of days. Some typical circulation patterns have been inferred from model calculations. They reflect the existence of different dynamic regimes in the lakes, namely, forced and free circulation regimes. The forced circulation regime is the well-known wind-induced double-gyre circulation accompanied by coastal upwelling and downwelling. A case of double-gyre circulation in Lake Onega was investigated in particular detail. The second dynamic regime is a free response (or a relaxation) of the stratified lake to wind cessation, and is connected closely with the evolution of wind-induced upwelling and thermal front propagation. Diagnostic calculations demonstrate that the regime of relaxation supports the restoration of cyclonic circulation in Lake Onega. Barotropic circulation patterns in Lake Ladoga were calculated with the emphasis on prevailing winds from west to south-east. Our calculations show that the bottom relief of Lake Ladoga causes asymmetry in the double-gyre circulation patterns. In particular, approximately equal cyclonic and anticyclonic circulation cells appearing in the case of southerly wind transform to a single dominant cyclonic cell and several small anticyclonic cells in the case of westerly wind. We also found especially strong sensitivity of the sense of rotation of the largest gyre to the east-west components of the wind vector.  相似文献   
73.
A natural abundance hydrogen stable isotope technique was used to study seasonal changes in source water utilization and water movement in the xylem of dimorphic root systems and stem bases of several woody shrubs or trees in mediterranean-type ecosystems of south Western Australia. Samples collected from the native treeBanksia prionotes over 18 months indicated that shallow lateral roots and deeply penetrating tap (sinker) roots obtained water of different origins over the course of a winter-wet/summer-dry annual cycle. During the wet season lateral roots acquired water mostly by uptake of recent precipitation (rain water) contained within the upper soil layers, and tap roots derived water from the underlying water table. The shoot obtained a mixture of these two water sources. As the dry season approached dependence on recent rain water decreased while that on ground water increased. In high summer, shallow lateral roots remained well-hydrated and shoots well supplied with ground water taken up by the tap root. This enabled plants to continue transpiration and carbon assimilation and thus complete their seasonal extension growth during the long (4–6 month) dry season. Parallel studies of other native species and two plantation-grown species ofEucalyptus all demonstrated behavior similar to that ofB. prionotes. ForB. prionotes, there was a strong negative correlation between the percentage of water in the stem base of a plant which was derived from the tap root (ground water) and the amount of precipitation which fell at the site. These data suggested that during the dry season plants derive the majority of the water they use from deeper sources while in the wet season most of the water they use is derived from shallower sources supplied by lateral roots in the upper soil layers. The data collected in this study supported the notion that the dimorphic rooting habit can be advantageous for large woody species of floristically-rich, open, woodlands and heathlands where the acquisition of seasonally limited water is at a premium.  相似文献   
74.
The survival of unfed males and females of six species of African ticks was monitored at five different saturation deficits at constant temperature (25°C). The survivorship curves for each species comprised a pre-mortality period, prior to when ticks started to die and a mortality period corresponding to a rapid increase in the mortality rate. Longevity was defined as pre-mortality plus mortality. A negative correlation between the longevity of the ticks and the saturation deficits was found with ticks surviving longer at lower deficits. The survival of males and females was similar. At low saturation deficits (2–4 mmHg) Amblyomma hebraeum survived the longest periods (74 weeks). Some correlation was found between the tick survival under dehydrating conditions and habitat associations. Rhipicephalus appendiculatus and Haemaphysalis leachii, the most mesic in distribution, had the shortest longevity (21 and 13 weeks, respectively) at high saturation deficits (7–21 mmHg). Hyalomma marginatum rufipes, the most xerophilic in distribution, had the longest survival (39.3±10.5 weeks) at high saturation deficits. Other factors apart from the adult survival should be taken into account when accounting for the tick distribution, in particular the tolerance of earlier developmental stages to desiccation.  相似文献   
75.
F. J. Castillo 《Oecologia》1996,107(4):469-477
The antioxidative protection during the C3-CAM shift induced by water stress was investigated in the temperate succulent Sedum album L. The C3-CAM shift was characterized in terms of CO2 exchange, titratable acidity and phosphoenolpyruvate carboxylase activity. Well-watered plants displayed C3-like patterns of gas exchange and exhibited a mild day-night acid fluctuation indicating that those plants were performing CAM-cycling metabolism. Imposed drought highly stimulated CAM cycling, decreasing the net CO2 uptake during the day, eliminating net CO2 efflux at night and stimulating tissue acid fluctuations. As water deficit developed, chlorophyll fluorescence measurements showed a decrease in the Fv/Fm ratio, indicating that photoinhibition could follow after severe drought. Protection might be performed by the increased activity of enzymes involved in the destruction of free radicals and oxidants, but their response depended on the water status of the plant. Ascorbate peroxidase and superoxide dismutase activities increased in plants subjected to mild stress but declined during severe water stress. Catalase activity, however, was quite stable under mild water stress and was clearly inhibited under severe water stress. At this stage, glutathione reductase and monodehydroascorbate reductase seemed to be very important in the protection against oxidants, both increasing considerably their activities under severe water stress. Even if recycling has been shown to alleviate photoinhibition, our results clearly demonstrate that antioxidative enzymes play an important role in the protection of plants from oxidants during the C3-CAM shift induced by water stress.  相似文献   
76.
To characterize mechanisms of esophageal desalination, osmotic water permeability and ion fluxes were measured in the isolated esophagus of the seawater eel. The osmotic permeability coefficient in the seawater eel esophagus was 2·10-4 cm·s-1. This value was much lower than those in tight epithelial, although the eel esophagus is a leaky epithelium with a tissue resistance of 77 ohm·cm-2. When the esophagus was bathed in normal Ringer solutions on both sides no net ion and water fluxes were observed. However, when mucosal NaCl concentration was increased by a factor of 3, Na+ und Cl- ions were transferred from mucosa to serosa (desalination). If only Na+ or Cl- concentration in the mucosal fluid was increased by a factor of 3, net Na+ and Cl- fluxes were reduced to 30–40%, indicating that 60–70% of the net Na+ and Cl- fluxes are coupled mutually. The coupled NaCl transport seems to be effective in desalting the luminal high NaCl. The remaining 30–40% of the total Na+ and Cl- fluxes seems to be due to a simple diffusion, because these components are independent of each other and follow their electrochemical gradients, and also because these fluxes remain even after treatment with NaCN or ouabain. A half of the coupled NaCl transport could be explained by a Na+/H+–Cl-/HCO 3 - double exchanger on the apical membrane of the esophageal epithelium, because mucosal amiloride and 4.4-diisothiocyanatostilbene-2,2-disulphonic acid inhibited the net Na+ and Cl- fluxes by approximately 30%. The other half of the coupled NaCl transport, which follows their electrochemical gradients, still remains to be explained.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulphonic acid - NMDG N-methyl-d-glucosamine - P Cl Cl- permeability coefficient - PD transepithelial potential difference - P Na Na+ permeability coefficient - P osm osinotic permeability coefficient - TALH thick ascending limb of Henle's loop  相似文献   
77.
The dynamic properties of water in phosphatidylcholine lipid/water dispersions have been studied, applying a combination of 2H-NMR techniques (quadrupole splitting and spin-lattice relaxation time) and self-diffusion measurements using pulsed field gradient (PFG) 1H-NMR. The hydration properties of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) were compared with those of DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) and EYL (egg yolk phosphatidylcholine (lecithin)). A model is presented that assumes an exponentially decaying influence of the bilayer surface on water dynamics as well as on water orientation with increasing hydration. This assumption is based on an exponentially decaying hydration potential which results from direct lipid-water and water-water interactions. The model describes successfully the experimental data for a large water concentration range, especially at low hydration, where other models failed. With the exception of a small fraction of water which is significantly influenced by the surface in slowing down the mobility, the interbilayer water has isotropic, free water characteristics in terms of correlation times and molecular order. Hydration properties of POPC are comparable with those of EYL but differ from DOPC. At very low water content the correlation times of headgroup segmental reorientation and water are similar, indicating a strong coupling of this water to the lipid lattice. The hydration properties of the three lipids studied are explained in terms of slightly different headgroup conformations due to different lateral packing of the molecules by their fatty-acid chain composition.  相似文献   
78.
The stable isotopes 2H and 18O were used to determine the water sources of Eucalyptus camaldulensis at three sites with varying exposure to stream water, all underlain by moderately saline groundwater. Water uptake patterns were a function of the long-term availability of surface water. Trees with permanent access to a stream used some stream water at all times. However, water from soils or the water table commonly made up 50% of these trees' water. Trees beside an ephemeral stream had access to the stream 40–50% of the time (depending on the level of the stream). No more than 30% of the water they used was stream water when it was available. However, stream water use did not vary greatly whether the trees had access to the stream for 2 weeks or 10 months prior to sampling. Trees at the third site only had access to surface water during a flood. These trees did not change their uptake patterns during 2 months inundation compared with dry times, so were not utilising the low-salinity flood water. Pre-dawn leaf water potentials and leaf 13C measurements showed that the trees with permanent access to the stream experienced lower water stress and had lower water use efficiencies than trees at the least frequently flooded site. The trees beside the ephemeral stream appeared to change their water use efficiency in response to the availability of surface water; it was similar to the perennial-stream trees when stream water was available and higher at other times. Despite causing water stress, uptake of soil water and groundwater would be advantageous to E. camaldulensis in this semi-arid area, as it would provide the trees with a supply of nutrients and a reliable source of water. E. camaldulensis at the study site may not be as vulnerable to changes in stream flow and water quality as previously thought.  相似文献   
79.
Resprout and mature plant shoot growth, leaf water status and gas exchange behavior, tissue nutrient content, flowering, and production were studied for co-occurring shallow-rooted (Arbutus unedo L.) and deeprooted (Quercus ilex L.) Mediterranean tree species at the Collserola Natural Park in Northeast Spain Resprouts showed higher growth rates than mature plant shoots. During fall, no differences in eco-physiological performance of leaves were found, but mobilization of carbohydrates from burls strongly stimulated growth of fall resprouts compared to spring resprouts, despite low exposed leaf area of the fall shoots. During summer drought, resprouts exhibited improved water status and carbon fixation compared to mature plant shoots. Shoot growth of Q. ilex was apparently extended due to deep rooting so that initial slower growth during spring and early summer as compared to A. unedo was compensated. Tissue nutrient contents varied only slightly and are postulated to be of minor importance in controlling rate of shoot growth, perhaps due to the relatively fertile soil of the site. Fall flowering appeared to inhibit fall shoot growth in A. unedo, but did not occur in Q. ilex. The results demonstrate that comparative examinations utilizing vegetation elements with differing morphological and physiological adaptations can be used to analyze relatively complex phenomena related to resprouting behavior. The studies provide an important multi-dimensional background framework for further studies of resprouting in the European Mediterranean region.  相似文献   
80.
Pepper plants were grown under different water and nitrogen availabilities that produced severe nitrogen limitations and mild water stress. Nitrogen limitation produced lower leaf N content, higher C:N, and higher leaf content of phenolic compounds, in consonance with the carbon/nutrient balance hypothesis. Nitrogen limitation also produced lower nutritional quality of leaves, with lower relative growth rates and lower efficiency of conversion of ingested biomass on the polyphagous herbivoreHelicoverpa armigera. The biomass gained per gram nitrogen ingested also tended to be lower in those insects feeding on nitrogen-limited plants, in parallel with their higher phenolic content. However, larvae fed on nitrogen-limited plants did not increase the ingestion of food to compensate for the N deficiency of leaves. The mild water stress, which only slightly tended to increase the phenolic content of pepper leaves, had no significant effect on nutritional indices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号